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a b s t r a c t 

One major limiting factor that prevents the accurate delineation of human organs has been the presence 

of severe pathology and pathology affecting organ borders. Overcoming these limitations is exactly what 

we are concerned in this study. We propose an automatic method for accurate and robust pathological 

organ segmentation from CT images. The method is grounded in the active shape model (ASM) frame- 

work. It leverages techniques from low-rank and sparse decomposition (LRSD) theory to robustly recover 

a subspace from grossly corrupted data. We first present a population-specific LRSD-based shape prior 

model, called LRSD-SM, to handle non-Gaussian gross errors caused by weak and misleading appearance 

cues of large lesions, complex shape variations, and poor adaptation to the finer local details in a unified 

framework. For the shape model initialization, we introduce a method based on patient-specific LRSD- 

based probabilistic atlas (PA), called LRSD-PA, to deal with large errors in atlas-to-target registration and 

low likelihood of the target organ. Furthermore, to make our segmentation framework more efficient and 

robust against local minima, we develop a hierarchical ASM search strategy. Our method is tested on the 

SLIVER07 database for liver segmentation competition, and ranks 3rd in all the published state-of-the-art 

automatic methods. Our method is also evaluated on some pathological organs (pathological liver and 

right lung) from 95 clinical CT scans and its results are compared with the three closely related methods. 

The applicability of the proposed method to segmentation of the various pathological organs (including 

some highly severe cases) is demonstrated with good results on both quantitative and qualitative exper- 

imentation; our segmentation algorithm can delineate organ boundaries that reach a level of accuracy 

comparable with those of human raters. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

The task of segmenting human organs (i.e., the extraction of the

target organ’s contours from its surroundings) from computed to-

mography (CT) images plays an essential role in various clinical ap-

plications, such as medical diagnosis, surgical planning and treat-

ment evaluation. In current clinical practice, organ segmentation is

still typically performed manually by radiologists in a slice-by-slice

fashion. Since manual delineation is labor-intensive, and prone to

errors due to observer dependence, fully automated organ segmen-

tation techniques are thus extremely valuable in clinical environ-

ment. 
∗ Corresponding author. 
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In the past decade, many sophisticated organ segmentation

ethods have been developed with varying degrees of success

 Heimann et al., 2009; van Rikxoort and van Ginneken, 2013 ). Of

hese, model-based methods have proved to be the most effective

ne, where a prior anatomical knowledge of the target organ is in-

orporated into the segmentation process. The prior information is

ainly represented by two types of statistical models: the statisti-

al shape model (SSM) ( Heimann and Meinzer, 2009 ) which learns

he local and global organ shape prior models; and the probabilis-

ic atlas (PA) ( Park et al., 2003 ) which learns the organ’s spatial

xistence probability model. Among various model-based methods

o far proposed, active shape model (ASM) ( Cootes et al., 1995 ) has

chieved state-of-the-art organ segmentation accuracy ( Heimann

nd Meinzer, 2009 ), thanks to its ability to combine both low-level

mage appearance information and high-level shape prior informa-

ion in a unified framework. 

http://dx.doi.org/10.1016/j.media.2017.02.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2017.02.008&domain=pdf
mailto:yzcheng@hitwh.edu.cn
http://dx.doi.org/10.1016/j.media.2017.02.008
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Fig. 1. Illustration of challenges in accurate and robust pathological organ segmentation from CT images: a pathological liver (a) and a pathological lung (b) case with large 

lesions; and (c) existence of imaging artifacts (i.e., metal shadows) in CT images caused by implants. 

 

p  

a  

b  

p  

c  

p  

o  

p  

h  

o  

c  

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

f  

t  

a  

T  

i  

s  

v  

v  

e

 

s  

f  

t  

(  

p  

i  

l  

a  

s  

s  

a  

n  

s  

o  

u  

s  

w  

a  

c  

c  

c  

g  

r

 

m  

t  

e  

t  

a  

a  

g  

d  

l  

t  

m  

a  

c  

m  

a

 

m  

e  

t  

c  

w  

i  

E  

(  

S  

r  

v  

c  

a

 

l

The aforementioned state-of-the-art organ segmentation ap-

roaches work well for certain challenging cases (e.g., large

natomical variations across the population; low contrast and am-

iguous boundaries between organs). However, when directly ap-

lied to segment pathological organs, which frequently occur in

linical data, these methods are most likely to fail. Because the

remises on which these proposed algorithms typically rely on are

nly applicable to organ segmentation under healthy or minimal

athological conditions rather than under severe pathology. This,

owever, greatly hampers the usefulness of these computer-based

rgan segmentation methods in the clinical environment. Specifi-

ally, the main challenges of segmenting pathological organs may

e outlined as follows: 

• Existence of large pathological lesions : Fig. 1 a shows a 2-D slice

image from an abdominal CT scan with large liver tumors,

which result in large differences in intensity values from that

of normal liver parenchyma. Accurate and robust segmenta-

tion of diseased organs with large pathological lesions is espe-

cially challenging due to: (1) large deformation of organ shapes

caused by big lesions; and (2) complex size and image appear-

ance variability induced by different types of lesions (e.g., hy-

podense and hyperdense lesions). 
• Presence of pathology affecting organ borders : Fig. 1 b shows an-

other challenging case of a lung CT scan, where the segmen-

tation of lung tissue is heavily challenged by the presence of

pathology at organ borders. This is due to the insufficient in-

tensity distinction between the diseased tissue and neighboring

tissue with similar appearance (e.g., the fat and muscle), result-

ing in blurred boundaries between them. And there is a high

risk of excluding the peripheral pathological tissue from the fi-

nal segmentation (i.e., under-segmentation). 
• Existence of other imaging artifacts and noise : The quality of CT

images can be severely deteriorated by imaging artifacts, such

as metal shadows caused by implants ( Fig. 1 c). It is still a chal-

lenge to reduce these imaging artifacts in CT images. 

Therefore, pathological organs are usually preferred to be delin-

ated manually by clinical experts. However, it is a daunting task

or clinicians to manually delineate organs with large lesions, due

o pathological organs’ highly deformed shape and variable appear-

nce, which goes beyond their prior knowledge of normal anatomy.

hus, it will also suffer from high intra- and inter-operator variabil-

ty. Although several methods have been proposed specifically for

egmenting pathological organs (see Section 2.1 for a detailed re-

iew), the results obtained so far remain unsatisfactory under se-

ere pathological conditions. Overcoming the above limitations is

xactly what we are concerned within this study. 

In this paper, we present an accurate and robust approach in

egmenting pathological organs from CT images based on the ASM

ramework. We first describe a new shape prior model to overcome

he limitations of conventional principal component analysis (PCA)

 Jolliffe, 2002 ) based SSM ( Cootes et al., 1995 ) when segmenting
athological organs: (1) sensitivity to non-Gaussian gross errors of

nput shapes caused by weak and misleading appearance cues of

arge lesions; (2) having difficulty modeling complex shape vari-

tions; and (3) poor adaptation to the finer local details of input

hapes. Specifically, inspired by the recently popular low-rank and

parse decomposition (LRSD) theory ( Chandrasekaran et al., 2011 ),

lso known as Robust PCA (RPCA) ( Candès et al., 2011 ), in the sig-

al processing and computer vision communities, a population-

pecific LRSD-based shape prior model, called LRSD-SM, is devel-

ped. It can tackle the above-mentioned limitations of SSM in a

nified framework under severe pathological conditions. LRSD was

pecifically proposed to overcome the problems of classical PCA

hen recovering a subspace from grossly corrupted data. Given

 data matrix D , LRSD decomposes it into two parts: a low-rank

omponent A representing the underlying subspace, and a sparse

omponent E corresponding to the sparse gross errors. LRSD thus

an robustly recover the underlying subspace in the presence of

ross errors or outliers, due to the explicit modeling of these er-

ors by the sparse component E . 

An important prerequisite for ASM-based methods is the shape

odel initialization. PA-based methods have been employed to au-

omatically initialize the shape model ( Okada et al., 2008 ). How-

ver, conventional PA-based methods suffer from problems in

he following two situations: (1) The target organ exhibits large

natomical variations in both shape and size, and the PA built with

ll the training data cannot precisely account for it; (2) The tar-

et organ contains large lesions (e.g., tumors), which show very

ifferent intensity values from that of normal organ, resulting in

arge errors in atlas-to-target registration and low likelihood of

he target organ. In this paper, we introduce a new PA-based

ethod to circumvent the above-mentioned problems. Specifically,

 patient-specific LRSD-based PA method formulated in a statisti-

al Bayesian framework, called LRSD-PA, is developed. It can derive

ore patient-specific initial shapes and largely eliminate the neg-

tive effects of large lesions. 

Lastly, in order to make our proposed segmentation framework

ore efficient and robust against local minima, we develop a hi-

rarchical ASM search strategy, where the shape model deforma-

ion proceeds in a global-to-local fashion. To illustrate the appli-

ability of our proposed framework to various pathological organs,

e have tested it in two challenging clinical applications involv-

ng pathological liver and right lung segmentation from CT images.

xtensive evaluations on 95 clinical CT scans of pathological cases

including some highly severe ones) show that our proposed LRSD-

M and LRSD-PA methods achieve significantly better accuracy and

obustness than the conventional methods in the presence of se-

ere pathology. Also, the performance of our proposed hierarchi-

al framework is comparable with that of state-of-the-art methods

nd human raters. 

In summary, the main contributions of this paper are as fol-

ows: 
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(1) LRSD-SM is proposed to tackle the limitations of PCA-based

SSM in a unified framework under severe pathological con-

ditions 

( Section 3.2 ); 

(2) An LRSD-PA based shape initialization method is introduced

to derive more patient-specific initial shapes and largely

eliminate the negative effects of large lesions ( Section 3.3 ); 

(3) A hierarchical ASM search strategy is developed to make the

segmentation framework more efficient and robust against

local minima ( Section 3.4 ); 

(4) The proposed segmentation framework is successfully ap-

plied to segment the challenging pathological liver and right

lung tissue from a total of 95 clinical CT scans ( Section 5 ). 

2. Related work 

In this section, we briefly review closely related work, and ex-

plain how previous work differs from ours. 

2.1. Pathological organ segmentation 

In the following, we briefly review a few organ segmentation

methods that are specifically tailored for the challenging datasets

containing pathological organs. 

Umetsu et al. (2014) proposed a liver CT segmentation method

specifically for the challenging cases with unusual shapes and large

lesions. They used sparse representation theory to select the most

relevant training datasets for an input case to construct the prob-

abilistic atlas (PA). To make the method robust against large le-

sions, they also introduced a novel term based on a set of “lesion

bases” to account for the differences between pathological cases

and normal liver parenchyma. However, their method failed when

neighboring organs (e.g., the gallbladder) show similar intensity

values to the peripheral lesions, resulting in over-segmentation of

the liver tissue in those areas. Dakua et al. (2016) proposed a semi-

automated pathological liver segmentation method in low contrast

CT images, where the stochastic resonance algorithm in the dis-

crete Gabor transform domain was first employed to enhance the

low contrast images, followed by dynamic cellular automaton and

level sets based image segmentation. However, an extensive eval-

uation of their method on more clinical data is needed to fully

demonstrate its benefit. 

A thorough review of different algorithms for pathological

lung segmentation in CT images has been recently presented by

Mansoor et al. (2015) , including a critical analysis of their feasibil-

ity and shortcomings in the case of the most common lung abnor-

malities. van Rikxoort and van Ginneken (2013) also presented a

comprehensive survey on lung CT segmentation methods that are

specifically designed for cases containing pathological abnormali-

ties. Wang et al. (2009) , van Rikxoort et al. (2009) , and Mansoor

et al. (2014) developed two-stage approaches for pathological lung

segmentation in CT images. In the first stage, a conventional ap-

proach was used to perform initial lung segmentation, followed

by a pathology recognition system that automatically detected

the failure of initial segmentation and the presence of pathol-

ogy. Then, if necessary, a refinement stage with a more sophisti-

cated algorithm was triggered to derive better results for patholog-

ical cases. Their extensive experiments showed that these meth-

ods performed much better than the conventional approach at a

relatively low increase in computational cost. However, a common

problem with these two-stage approaches is that large amounts of

training data from healthy subjects is required for the pathology

recognition system to generalize well and achieve high accuracy.

Sluimer et al. (2005) proposed a PA-based pathological lung seg-

mentation method in CT scans. It avoided the drawbacks of using a
ingle normal reference lung as the atlas, and the initial segmenta-

ion was then refined by voxel classification on the border volume.

heir method achieved high accuracy when the lung tissue was af-

ected by minimal to moderate pathology, but failed for severely

athological cases. Prasad et al. (2008) used an adaptive thresh-

lding technique guided by the curvature of ribs to segment the

ung tissue with diseases. Although their method showed signifi-

ant improvement over the conventional thresholding-based tech-

iques, it may fail when large high density lesions lie inside the

ung parenchyma. Sofka et al. (2011) and Sun et al. (2012) proposed

ctive shape model (ASM) based segmentation methods for pa-

ients with lung diseases in CT data. Although their methods deliv-

red promising results, their heuristics-based model initialization

ethod depends heavily on the quality of automatic landmarks

etection near lung boundaries (e.g., rib cage and carina), and it

s not robust against false detections. Nakagomi et al. (2013) pre-

ented an extended graph cuts framework for lung segmentation

n CT images, which incorporated multiple shapes and prior infor-

ation on neighbor structures of the lung. However, their method

as mainly targeted at one particular type of abnormality, i.e.,

ases with pleural effusion. Hua et al. (2011) proposed a graph

earch based method for lung segmentation in CT images. Their

ethod achieved better accuracy than the intensity-only methods

or pathological cases. However, the construction of the graph was

estricted to a narrow band around the pre-segmented lung sur-

ace obtained from a conventional intensity-based method, which

sually failed under severe pathological conditions. 

.2. Low-rank and sparse decomposition for medical applications 

Recently, the low-rank and sparse decomposition (LRSD) the-

ry has found many applications in the field of medical imag-

ng computing ( Zhou et al., 2014 ). Deng et al. (2014) proposed an

RSD-based local morphological analysis method by defining the

ocal deformations as the norm of the decomposed sparse com-

onent, and applied it to the diagnosis of cirrhosis livers. Hamy

t al. (2014) proposed an LRSD-based robust data decomposition

egistration method for respiratory motion correction in dynamic

ontrast-enhanced MRI (DCE-MRI), where the registration of DCE-

R time-series was based on the decomposed motion related com-

onents, thus confoundings from contrast agent induced local in-

ensity changes are mostly eliminated. Zweng et al. (2015) pro-

osed an LRSD-based automatic guide-wire detection method in

uoroscopic video sequences for neurointerventions. Ma et al.

2015) proposed an LRSD-based layer separation method for vessel

nhancement in interventional X-ray angiograms. And both of the

wo aforementioned methods used the same assumption as in the

RSD-based foreground detection method, that is the nearly static

ackground can be modeled by a low-rank component, while the

oving foreground objects constitute sparse outliers ( Bouwmans

nd Zahzah, 2014 ). However, one of the main drawbacks of these

bove-mentioned methods is that only the gross errors are ex-

licitly modeled with the sparse component in their implementa-

ion of the low-rank image decomposition. Therefore, some small

ense Gaussian noise will still be present in the decomposed low-

ank component, which can degrade these methods’ overall perfor-

ance. 

.3. Relation to previous work 

Our proposed patient-specific LRSD-PA method is inspired by

ecent papers by Liu et al. (2014) and Liu et al. (2015) , who pro-

osed a common framework for atlas-based tissue segmentation

nd unbiased atlas building in brain MR images by using low-

ank and sparse image decomposition to handle patients with large
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athology and deformations. In this paper, we extend their meth-

ds in several important ways: (1) In their methods, all the train-

ng data was directly employed to build an atlas, and a healthy

rain atlas (i.e., the SRI24 atlas ( Rohlfing et al., 2010 )) instead

f the constructed atlas was used as the template for image-to-

tlas registrations in tissue segmentation. Whereas we construct

ew patient-specific liver and lung atlases (i.e., LRSD-PA) based on

lustered training data containing large pathology and deforma-

ions. Our method not only can derive a more accurate atlas for

he target image, but also is much more efficient in both com-

utation time and memory cost. Moreover, we utilize the con-

tructed atlases as the template for the initial shape extraction.

2) Their methods fail when the target image differs considerably

rom the training data, especially for soft tissue organs (e.g., the

iver) with highly complex anatomical variability (as will shown

n Section 5.3 ). Because when the target image has distinctive

hape and appearance,its landmarks are mostly assigned to the

ecomposed sparse component rather than the low-rank compo-

ent, leading to the failure of registration between its low-rank

omponent and atlas. To resolve this problem, more similar type

atasets are needed as suggested by the authors. Whereas we pro-

ose a patient-specific LRSD-PA to deal with this problem, where

he training data is partitioned into multiple clusters of similar

ype cases, and the training data for a specific target image comes

rom the selected best cluster based on the similarity between it

nd the cluster-specific PA. (3) In the experiments, they only used

issue-class standard deviation (TCSD) as the evaluation metric to

ssess the accuracy of tissue label alignment between atlas and the

arget image,rather than comparisons between final tissue labels

nd ground truth labels, whereas we evaluate our method on both

iver and lung datasets with corresponding ground truth tissue la-

els. (4) In their implementation of the low-rank and sparse image

ecomposition, only the gross errors are modeled with the sparse

omponent, and the important weight parameters, which deter-

ine the amount of information allocated in low-rank and sparse

omponents, were heuristically and manually chosen. 

Whereas in our method, small dense Gaussian noise is also ex-

licitly modeled with a separate component, and the weight pa-

ameters are set automatically. 

. Methods 

Here we propose a novel ASM-based pathological organ seg-

entation framework in detail. Fig. 2 shows the flowchart of the

roposed segmentation framework, including training and testing

hases. For the purpose of illustration, we will use the liver tissue

s an example of pathological target organ. 

In the training phase, we construct the models employed in the

ierarchical ASM search: the proposed population-specific LRSD-

ased shape prior model (LRSD-SM) ( Section 3.2 ); and the appear-

nce model based on normalized gradient profiles ( Cootes and Tay-

or, 2001 ). In the testing phase, for a given input CT image to be

egmented, we utilize the proposed patient-specific LRSD-based PA

LRSD-PA) to obtain an initial organ shape ( Section 3.3 ). Subse-

uently, during the hierarchical ASM search, the initial shape is

teratively deformed and refined by using the trained appearance

nd shape prior models (i.e., LRSD-SM) respectively, in a global-to-

ocal fashion ( Section 3.4 ). Essentially, the proposed segmentation

ramework is based on a research line of model initialization via

 multi-atlas segmentation (MAS) approach ( Iglesias and Sabuncu,

015 ), followed by an ASM refinement step. 

.1. Main notations 

Throughout this paper, matrix and its entries are denoted by

apital boldface and small symbols, respectively (e.g., x ij is the
 i, j )-th entry of the matrix X ). A variety of matrix norms are used:

 X ‖ ∗ = 

∑ 

k σk the nuclear norm, where σ k denotes the k -th sin-

ular value of X ; ‖ X ‖ 0 the � 0 -norm (i.e., the number of non-zero

ntries in X ); ‖ X ‖ 1 = 

∑ 

i, j | x i j | the � 1 -norm; ‖ X ‖ F = 

√ ∑ 

i, j x 
2 
i j 

the

robenius norm; ‖ X ‖ 2 = max k σk the spectral norm; and ‖ X ‖ ∞ 

=
ax i, j | x i j | the infinity norm. 

.2. Low-rank and sparse decomposition based shape model 

Here we describe the procedure to construct our proposed

RSD-SM from training data and optimize the objective function

f the resulting model. 

.2.1. Problem formulation 

Assume that we have a set of K spatially aligned correspond-

ng triangular mesh liver training shapes {M i | i = 1 , 2 , . . . , K} ,
nd each shape M i is represented by a shape vector d i =

(v T 
i 1 

, v T 
i 2 

, . . . , v T 
in p 

) T by concatenating the coordinates of all its ver-

ices, where v i j = (x i j , y i j , z i j ) denotes the j th point of shape M i ,

nd n p is the number of landmark points. Using these pre-

ligned training shapes, we can build a liver shape repository D 0 

y stacking all the training shape vectors column-wisely: D 0 =
 d 1 , d 2 , . . . , d K ] ∈ R 

3 N×K , where N is the number of vertices of a

hape. Given a pre-aligned input shape to be refined y ∈ R 

3 N , the

ata matrix D can thus be defined as the concatenation of the

hape repository and input shape: D = [ D 0 , y ] ∈ R 

3 N×(K+1) . 

In the classical statistical shape model (SSM) ( Cootes et al.,

995 ), principal components analysis (PCA) is applied to the

natomical landmarks to learn the principal low-dimensional sub-

pace of plausible liver shapes. Given a pre-aligned input shape

o be refined y ∈ R 

3 N , it performs a linear basis expansion given

 principal modes of shape variation, that is, approximating y by

 linear combination of r principal components. Mathematically, it

eeks the best rank- r estimate of D in a least-squares sense, lead-

ng to the following minimization problem: 

ˆ 
 = arg min 

A 

‖ D − A ‖ F s . t . rank (A ) ≤ r, D = A + Z . (1)

t can be solved analytically via the singular value decomposition

SVD) of the data matrix D . Then the refined input shape ˆ y is de-

ned as the last column of the low-rank matrix ˆ A . 

The formulation of classical SSM in Eq. (1) says that the liver

hapes are linearly correlated with each other and form a low-

ank matrix, and the parts that cannot be fitted in the least squares

ense are the shape errors, which implies that it only accounts for

mall dense Gaussian noise due to the use of � 2 -norm. Besides, it

an only achieve optimality under the condition that the input data

ollows a Gaussian distribution. Therefore, classical SSM will have

oor performance in cases where the input shapes are corrupted

y gross errors or outliers. Unfortunately, such gross segmentation

rrors are prevalent in the ASM-based local search strategy due to

eak and misleading appearance cues and limited search coverage.

In real applications, the gross errors may be arbitrarily large,

ut the part corrupted by these errors can be considered sparse

ompared with the whole liver shape. To overcome the short-

omings of classical SSM, we cast the liver shape refinement pro-

edure as a low-rank and sparse decomposition (LRSD) problem

 Chandrasekaran et al., 2011 ), also known as Robust PCA (RPCA)

 Candès et al., 2011 ). Specifically, it decomposes the data matrix D

nto two parts: (1) a low-rank component A corresponding to the

lobal liver shape structure; and (2) a sparse component E corre-

ponding to the sparse gross errors. Therefore, the LRSD model fits

ur shape refinement problem quite well. Mathematically, it leads

o the following minimization problem: 

( ̂  A , ̂  E ) = arg min 

A , E 

rank (A ) + λ‖ E ‖ 0 s . t . D = A + E , (2)
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Fig. 2. Flowchart of the proposed framework for pathological organ segmentation, including training and testing phases. Here the liver tissue is used as an example of 

pathological target organ. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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where λ controls the trade-off between the low-rank component

A and the sparse component E . Then the refined input shape ˆ y is

defined as the last column of the low-rank matrix ˆ A . 

One remaining limitation of the LRSD model in Eq. (2) is its as-

sumption that the input liver shape only has sparse gross errors

because of the � 0 -norm nature. However, in real cases the input

shape is often also corrupted by small dense Gaussian noise, af-

fecting every vertex of the input shape. Therefore, we propose a

novel LRSD-based shape model (i.e., LRSD-SM) by extending the

LRSD model in Eq. (2) to consider the presence of both sparse gross

errors and entry-wise Gaussian noise in the input shape, resulting

in the following minimization problem: 

( ̂  A , ̂  E ) = arg min 

A , E 

rank (A ) + λ‖ E ‖ 0 

s . t . ‖ D − A − E ‖ F ≤ δ, 
(3)

where δ > 0 defines the upper bound of the considered Gaussian

noise. 

The optimization problem in Eq. (3) is in general intractable and

known to be NP-hard due to the non-convexity of the matrix rank

and � 0 -norm. Recently, it has been proved that solving the follow-

ing relaxed dual convex optimization problem, named Stable Prin-

cipal Component Pursuit (SPCP) ( Zhou et al., 2010 ), can achieve the

same recovery accuracy: 

( ̂  A , ̂  E , ̂  Z ) = arg min 

A , E , Z 

‖ A ‖ ∗ + λ‖ E ‖ 1 + γ ‖ Z ‖ 

2 
F 

s . t . D = A + E + Z , 

(4)

where λ and γ control the trade-off among the three optimized

components, and the nuclear norm and � 1 -norm are the convex

surrogates of the rank and � 0 -norm, respectively. Because of the

sparsity-inducing property of the � 1 -norm, the solution of this op-

timization problem 

ˆ E will be the sparsest, meaning most entries
ill be zero. Under some mild conditions on the rank upper bound

nd noise sparsity level, it has been proven that SPCP can stably re-

over both A and E with high probability and with an error bound

roportional to the noise level ( Zhou et al., 2010 ). 

Eq. (4) is the optimization problem of our proposed LRSD-SM,

hrough which the refined input shape ˆ y lies in the last column

f the low-rank matrix ˆ A , while the segmentation errors are ex-

racted in 

ˆ E and 

ˆ Z . The Frobenius norm is employed to model the

mall dense Gaussian noise, while E is used to explicitly model the

parse gross errors. Therefore, our proposed LRSD-SM is robust to

andle both large sparse shape errors and small dense Gaussian

oise. Fig. 3 shows an example of refining an input liver shape y

y using our proposed LRSD-SM. 

.2.2. Optimization framework 

Since the introduction of the RPCA model in Candès et al.

2011) , various optimization algorithms have been proposed to

olve the low-rank and sparse decomposition problem and sta-

le recovery of both A and E can be guaranteed ( Candès et al.,

011; Zhou et al., 2010 ). In Zhou et al. (2010) , the SPCP problem is

olved by using the accelerated proximal gradient (APG) algorithm

 Ganesh et al., 2009 ), which is essentially a variant of the fast iter-

tive shrinkage-thresholding algorithm (FISTA) ( Beck and Teboulle,

009 ) coupled with a fast continuation technique. In consideration

f both efficiency and scalability (in our application), we present

he use of alternating direction method of multipliers (ADMM)

ethod ( Lin et al., 2011; Boyd et al., 2010 ). The ADMM method is a

opular first-order optimization method that improves the classical

ugmented Lagrangian method by exploiting the separable struc-

ure of the objective function and variable splitting. It has been

hown that, compared with the APG algorithm, the ADMM method

as the following main advantages ( Lin et al., 2011 ): (1) it performs
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Fig. 3. An example of refining an input liver shape y (indicated by the blue rect- 

angle in D ) as ˆ y using our low-rank and sparse decomposition based shape model 

(LRSD-SM). Filled-in blocks in E and Z indicate nonzero entries. Therefore, the last 

column of E which corresponds to the input shape y is sparse in this case. It 

demonstrates that the data matrix D can be decomposed into a low-rank compo- 

nent A corresponding to the global liver shape structure, a sparse component E 

corresponding to the sparse gross errors, and component Z corresponding to the 

small dense Gaussian noise. And y contains sparse gross errors (indicated by a red 

rectangle in y ). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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Algorithm 1 The ADMM algorithm. 

Input: Data matrix D , weighting parameters λ and γ . 

Initialize: A 0 =E 0 =Z 0 =0 , Y 0 = 

D 
max (‖ D ‖ 2 ,λ−1 ‖ D ‖ ∞ 

) 
, μ0 = 

1 . 25 
‖ D ‖ 2 , 

μmax = 10 9 , ρ= 1 . 2 , ε = 10 −7 , and k = 0 . 

while not converged do 

// Update A . 

(U , �, V ) ← svd( D − E k − Z k + μ−1 
k 

Y k ) , 

A k +1 ← U S 
μ−1 

k 

(�) V 

T . 

// Update E . 

E k +1 ← S λ
μk 

(D − A k +1 − Z k + μ−1 
k 

Y k ) . 

// Update Z . 

Z k +1 ← 

μk 
μk +2 γ (D − A k +1 − E k +1 + μ−1 

k 
Y k ) . 

// Check the stopping criteria. 

if 
‖ D −A k +1 −E k +1 −Z k +1 ‖ F ‖ D ‖ F < ε then 

break . 

end if 

// Update Y . 

Y k +1 ← Y k + μk (D − A k +1 − E k +1 − Z k +1 ) . 

// Update μ. 

μk +1 ← min( ρμk , μmax ) . 

k ← k + 1 . 

end while 

Output: A = A k +1 , E = E k +1 , Z = Z k +1 . 
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ore than five times faster, converges with many fewer iterations,

nd needs less memory space; and (2) it can derive an accurate

nd exact solution rather than just an approximation. 

We follow a research line ( Lin et al., 2011 ) in which the stan-

ard ADMM method is employed to solve the LRSD problem. In

hat work, the standard ADMM method can only handle objec-

ive functions containing at most two separable blocks of variables.

n our application, however, it cannot be used straightforwardly

o solve the SPCP problem in Eq. (4) which involves three blocks

f variables (i.e., A, E , and Z ). Therefore, we extend the standard

DMM method to solve the SPCP problem in Eq. (4) with three

onvex separable objective functions. 

Algorithm 1 summarizes our derived ADMM method for solv-

ng the SPCP problem of the proposed LRSD-SM in Eq. (4) . The de-

ailed mathematical derivation procedure is given in Appendix A .

uppose that the size of the data matrix D is m × n with m

n . The computational cost of the employed ADMM method

s mainly dominated by performing SVD in the A subproblem

 Eq. (A.7) ). Therefore, the computational complexity of ADMM is

 ( mn 2 ) per iteration. Generally, the convergence properties of the

DMM method with at most two blocks have been well estab-

ished ( Lin et al., 2011; Boyd et al., 2010 ). However, for the ADMM

ethod with three blocks, it is still very hard to guarantee its

lobal convergence under general conditions. Fortunately, Hong

nd Luo (2013) have proved that under some restrictive conditions

n the dynamically changing penalty parameter sequence { μk }, the

onvergence properties of the derived ADMM method with three

locks can be guaranteed. In our experiments, we also found that

he algorithm always converges. Empirically, the ADMM method

ith three blocks has been applied successfully in existing appli-

ations ( Peng et al., 2012; Tao and Yuan, 2011; Liu et al., 2013 ). 

.3. Initial shape extraction using patient-specific low-rank and 

parse decomposition based probabilistic atlas 

In order to derive more patient-specific initial shapes for our

SM-based segmentation framework, we propose an LRSD-based

robabilistic atlas (PA) (i.e., LRSD-PA) for shape model initializa-

ion. It has been shown that in atlas-based segmentation, selecting

 subset of training data anatomically most similar to the target

mage can produce a better segmentation result than that of using

he full training data ( Aljabar et al., 2009; Iglesias and Sabuncu,

015 ). This is especially true for soft tissue organs (e.g., the liver)

hat exhibit high anatomical variability ( Oda et al., 2011; Chu et al.,

013 ). Also, the computational cost will decrease drastically when
nly a small subset of training data is used to learn the PA instead

f the full training data. Therefore, we partition the training data

nto multiple clusters of similar type cases and separately construct

 cluster-specific PA for each cluster. In the initial shape extraction

rocedure, we first select the best cluster based on the similarity

etween the cluster-specific PA and the target image, and generate

 patient-specific PA from all the training data within the selected

luster. Then we use a statistical Bayesian framework to derive the

nitial shape, and the patient-specific PA provides the prior proba-

ility of organ existence. 

.3.1. Clustering of training data using spectral clustering 

To partition the training data into multiple clusters of simi-

ar type cases, we employ the spectral clustering algorithm ( von

uxburg, 2007 ). It consists of two major steps: (1) aligning train-

ng data: Before performing clustering of training data, we need

o align them together in terms of intensity images and estab-

ish correspondence between liver shapes. Because in the cluster-

ng step, we employ a similarity measure between all the training

ata based on both intensity images and the corresponding shapes;

nd (2) clustering using the spectral clustering algorithm. The de-

ailed procedures for these two steps are available in the Supple-

entary Material. 

.3.2. Construction of cluster-specific LRSD-based PA 

After subdividing the training data into multiple clusters, we

eparately construct a cluster-specific PA for each cluster. However,

ost of the training data employed in this study contains patho-

ogical abnormalities. To largely eliminate the undesired effects of

hese abnormalities on the final constructed PA, we propose an un-

iased PA construction method based on low-rank and sparse de-

omposition, named LRSD-PA. Its formulation is based on the same
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Fig. 4. An example of deriving the lesion-corrected image I LR t for a target liver image I t (indicated by the blue rectangle in D ) using our low-rank and sparse decomposition 

based probabilistic atlas (LRSD-PA). Filled-in blocks in Z indicate nonzero entries. All the columns of E are sparse compared with the whole image in this case. It demonstrates 

that the data matrix D can be decomposed into a low-rank component A corresponding to the lesion-corrected liver images, a sparse component E corresponding to the 

sparse pathological abnormalities, and component Z corresponding to the small dense Gaussian noise. And the target image I t contains sparse pathological abnormalities 

(indicated by red rectangles in I t and E ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Cluster-specific probabilistic atlas construction and 

lesion-corrected training data derivation procedure. 

Input: Training data for class c: { I i | i = 1 , . . . , N c } ,and the maximum 

number of iterations: N max . 

Choose the training sample with the least amount of lesionas the 

initial average template Ī 0 . 

for i = 1 to N c do 

Find the nonrigid transformation T 0 
i 

that aligns I i to the tem- 

plate Ī 0 : I 1 
i 

← T 0 
i 
( I i ) . 

end for 

for j = 1 to N max do 

// Compute low-rank parts via LRSD on data matrix D . 

[ I 
j 
LR 1 

, I 
j 
LR 2 

, . . . , I 
j 
LR N c 

] ← LRSD( D = [ I 
j 
1 
, I 

j 
2 
, . . . , I 

j 
N c 

] ) . 

// Derive the new average template using low-rank 

parts. 

Ī j ← 

1 
N c 

∑ N c 
k =1 

I 
j 
LR k 

. 

for i = 1 to N c and j < N max do 

// The low-rank parts I 
j 
LR i 

are used for registration. 

Find the nonrigid transformation T 
j 

i 
that aligns I 

j 
LR i 

to the 

template Ī j . 

// Warp I 
j 
i 
to the space of the template Ī j using T 

j 
i 
. 

I 
( j+1) 
i 

← T 
j 

i 
( I j 

i 
) . 

end for 

end for 

// Derive the cluster-specific probability atlas. 

Ī c ← Ī N max . 

// Warp the training data to the derived probability 

atlas. 

for i = 1 to N c do 

Find the nonrigid transformation T i that aligns I i to the proba- 

bility atlas Ī c : I 
′ 
i 
← T i (I i ) . 

end for 

// Compute low-rank parts via LRSD on data matrix D 

′ 
. 

[ I 
′ 
LR 1 

, I 
′ 
LR 2 

, . . . , I 
′ 
LR N c 

] ← LRSD( D 

′ = [ I 
′ 
1 
, I 

′ 
2 
, . . . , I 

′ 
N c 

] ) . 

// Derive the lesion-corrected training data for class c. 

for i = 1 to N c do 

ˆ I i ← T −1 
i 

(I 
′ 
LR i 

) . 

end for 

Output: The constructed probability atlas for class c: Ī c ,and the 

lesion-corrected training data for class c: { ̂ I i | i = 1 , . . . , N c } . 
two facts as in our proposed LRSD-SM: (1) the aligned liver im-

ages are linearly correlated with each other and form a low-rank

matrix; and (2) the parts that cannot be modeled by the low-rank

part are gross errors or outliers (e.g., pathological abnormalities),

which also can be considered sparse compared with the whole im-

age. Also, through LRSD-PA, we can derive lesion-corrected train-

ing data for each cluster. Specifically, the vectorized voxel inten-

sity values of each aligned liver image form a column vector of the

data matrix D , which is decomposed into three parts according to

Eq. (4) : (1) a low-rank component A corresponding to the lesion-

corrected liver images; (2) a sparse component E corresponding to

the sparse pathological abnormalities; and (3) component Z cor-

responding to the small dense Gaussian noise. Then the lesion-

corrected liver images in the final low-rank component A are em-

ployed to construct cluster-specific PA. The iterative procedure for

constructing cluster-specific PA using our proposed LRSD-PA and

deriving lesion-corrected training data for each cluster is summa-

rized in Algorithm 2 . Throughout this paper, the B-splines based

free-form deformation (FFD) model ( Rueckert et al., 1999 ) is em-

ployed to perform all the image registration. Note that in order

to increase the robustness against large lesions, we firstly perform

registrations between input images and the chosen initial template

to align them to a common coordinate system as in Liu’s method

( Liu et al., 2014; Liu et al., 2015 ). Otherwise, if we directly apply

LRSD on unaligned input liver images with large anatomical vari-

ability to compute the low-rank images, followed by a registration

to the low-rank images, then the derived low-rank images will de-

viate considerably from their corresponding input images, resulting

in blurry and anatomically unrepresentative atlases. 

3.3.3. Construction of patient-specific LRSD-based PA 

Due to high anatomical variability of the liver tissue, given a

target image I t to be segmented, we construct a patient-specific

LRSD-based PA for it to derive a more accurate initial liver shape.

We first select the best training data cluster based on the similar-

ity between the cluster-specific PA and the target image. Specifi-

cally, the cluster c is selected when the similarity between the tar-

get image I t and the atlas intensity image Ī 
′ 
c that is warped to the

space of I t is the largest. The normalized cross correlation (NCC)

is employed as the similarity measure, that is NC C ( ̄I 
′ 
c , I t ) is the

largest. A patient-specific PA can then be constructed using all the

lesion-corrected training data within the selected cluster c . How-

ever, most of the testing data in this study contains lesions. To

largely remove the negative effects of these lesions on the con-

structed patient-specific PA and on the final likelihood image, we

use the proposed LRSD-PA to derive the lesion-corrected target im-

age I LR t , as shown in Algorithm 3 . Similar to Algorithm 2 , we firstly

align all the selected training images to the target image I t be-

fore applying LRSD on data matrix D . An example of deriving the
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Algorithm 3 Lesion-corrected target image derivation procedure. 

Input: The lesion-corrected training data within the selected clus- 

ter c: { ̂ I i | i = 1 , . . . , N c } , the target image to be segmented: I t , and 

the maximum number of iterations: N max . 

for i = 1 to N c do 

Find the nonrigid transformation T 0 
i 

that aligns ˆ I i to the target 

image I t : ̂ I i 
1 ← T 0 

i 
( ̂ I i ) . 

end for 

for j = 1 to N max do 

// Compute the low-rank target image via LRSD. 

I 
j 
LR t 

← LRSD( D = [ I t , ˆ I 1 
j 
, ˆ I 2 

j 
, . . . , ˆ I N c 

j 
] ) . 

for i = 1 to N c and j < N max do 

// The low-rank target image I 
j 
LR t 

is the new template. 

Find the nonrigid transformation T 
j 

i 
that aligns ˆ I i to I 

j 
LR t 

: 

ˆ I i 
( j+1) ← T 

j 
i 
( ̂ I i ) . 

end for 

end for 

// Derive the lesion-corrected target image. 

I LR t ← I N max 
LR t 

. 

Output: The lesion-corrected target image I LR t . 

l  

i

 

e  

t  

a  

c  

n  

p  

s

L

w  

w  

N

3

 

i  

f  

f  

i  

p  

I

 

T  

g  

g  

g  

T  

t  

o  

I

w  

b  

T  

u  

i  

h  

o  

e

3

 

t  

M  

c  

o  

s  

s  

i  

s  

t  

i  

s  

s  

m  

s  

r  

F

 

i  

m  

w  

a  

m  

s  

c  

s  

m  

o  

o  

w  

m  

w  

a  

d  

o  

o  

a  

s  

f  

t  

u  

i  

i  

s  

r  

s  

f  

f  
esion-corrected image for a target liver image I t by using LRSD-PA

s shown in Fig. 4 . 

After the lesion-corrected target image I LR t is derived, it is

mployed as the new target image instead of I t , and lesions in

he original target image I t are largely removed in I LR t . Then

ll the lesion-corrected training data within the selected cluster

 { ( ̂ I i , L i ) | i = 1 , . . . , N c } ( L i is the corresponding label image) is

onrigidly warped to the space of the new target image I LR t . A

atient-specific PA ( ̄I t , ̄L t ) can thus be constructed as the weighted

um of the warped data { ( ̂ I i 
′ 
, L 

′ 
i 
) | i = 1 , . . . , N c } : 

Ī t = 

∑ N c 
i =1 

ω i ̂
 I i 
′ 

∑ N c 
i =1 

ω i 

, 

¯
 t = 

∑ N c 
i =1 

ω i L 
′ 
i ∑ N c 

i =1 
ω i 

, (5) 

here the weights ω i are defined as the similarity between the

arped data ˆ I i 
′ 

and the lesion-corrected target image I LR t : ω i =
C C ( ̂ I i 

′ 
, I LR t ) . 

.3.4. Initial organ shape extraction 

Once the patient-specific PA ( ̄I t , ̄L t ) is constructed, we employ

t to derive the initial organ shape based on a statistical Bayesian

ramework. Assuming that the liver intensity values in a CT volume

ollow the Gaussian distribution N (μ, σ 2 ) , where μ is the mean

ntensity value and σ is the standard deviation. The conditional

robability p(I LR t (x ) | l) , which equals the target likelihood image

 LH t (x ) , can be defined as: 

p(I LR t (x ) | l) = I LH t (x ) = 

1 √ 

2 πσ 2 
exp 

(
− (I LR t (x ) − μ) 2 

2 σ 2 

)
. (6)

he Gaussian parameters (i.e., μ and σ ) are estimated in a re-

ion of interest (ROI) via the expectation-maximization (EM) al-

orithm ( Dempster et al., 1977 ). And the ROI is defined as the re-

ion where the atlas label image L̄ t is larger than a threshold value

 PA = 0 . 9 . Based on a statistical Bayesian framework, we can define

he total liver likelihood image I T LH (x ) as the posterior probability

t 
f liver tissue existence in the lesion-corrected target image I LR t :

p(l| I LR t (x )) . It is computed via the Bayes’ theorem: 

 TL H t ( x ) = p ( l | I LR t ( x ) ) = 

p ( I LR t ( x ) | l ) p ( l ) 
Z 

= 

I LH t ( x ) L t ( x ) 

Z 
, 

(7) 

here the prior probability of liver tissue existence p ( l ) is given

y the atlas label image L̄ t (x ) , and Z is a normalizing constant.

he initial liver shape is then extracted by thresholding I T LH t (x )

sing Otsu’s method ( Otsu, 1979 ), followed by performing open-

ng operator, removing unconnected components, and filling small

oles via closing operator. In our proposed ASM-based pathological

rgan segmentation framework, the derived initial organ shape is

mployed as the shape initialization. 

.4. Hierarchical pathological organ segmentation framework 

It is known that the classical PCA-based SSM has poor adap-

ation to the finer local details of input shapes ( Heimann and

einzer, 2009; Zhang et al., 2012 ). This is because in the final

onstructed SSM, these important local details will be smoothed

ut even when they are present in the training samples but not

tatistically significant. It is especially the case when modeling

oft tissue organs (e.g., the liver) that exhibit high shape variabil-

ty. To alleviate this problem, we propose to partition the training

amples into different subgroups that belong to the same popula-

ion using the identical spectral clustering procedure as described

n Section 3.3.1 , and then we separately construct a population-

pecific LRSD-SM shape prior model for each subgroup. Since the

hape subspace spanned by samples from a subgroup is much

ore compact than that of using all training samples, the resulting

hape models can thus recover the finer local details more accu-

ately and handle complex shape variations ( Shi and Shen, 2008;

oruzan et al., 2014 ). 

After the construction of population-specific LRSD-SM, we now

ntegrate it into our proposed ASM-based pathological organ seg-

entation framework. In order to make the segmentation frame-

ork more efficient and robust against local minima, we propose

 hierarchical ASM search strategy, where the shape model defor-

ation proceeds in a global-to-local fashion. The proposed ASM

earch strategy alternatively iterates between two procedures until

onvergence as in Cootes et al. (1995) : firstly the initialized liver

hape is deformed by searching for a better position for each land-

ark point according to the trained appearance model; and sec-

ndly, the intermediate deformed shape is refined by projecting

nto the learned shape space with the LRSD-SM model, through

hich both large gross errors and small Gaussian noise caused by

isleading appearance cues will be largely eliminated. Specifically,

e first generate multi-resolution image pyramids ( Burt, 1981 ) for

ll training images, and match population-specific LRSD-SM with

ifferent number of shape subgroups to images at different res-

lutions. Then we separately construct appearance models based

n normalized gradient profiles ( Cootes and Taylor, 2001 ) for im-

ges at different resolutions. For a given input CT image to be

egmented, we also construct a multi-resolution image pyramid

or it. At the start of hierarchical ASM search (i.e., level l = 0 of

he image pyramid), the LRSD-SM based on all training samples is

sed to guide the initial segmentation. Then as the level l of the

mage pyramid increases, the LRSD-SM that only employs train-

ng samples within a selected shape subgroup c (the deformed

hape belongs to) is utilized to further refine the segmentation

esults. The shape subgroup c is selected from a total of (l + 1)

hape subgroups according to the shape similarity between the de-

ormed shape and each subgroup. The shape model is thus de-

ormed in a global-to-local fashion, and more accurate recovery
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Algorithm 4 Hierarchical pathological organ segmentation frame- 

work. 

Input: An input CT image: V ,the number of resolution levels: 

L max ,and the number of iterations per resolution level: N 

′ 
max . 

M 0 ← LRSD-PA based shape model initialization. 

{V 0 , V 1 , . . . , V (L max −1) = V} ← Construction of a multi-resolution im- 

age pyramid for input image V . 

for l = 0 to (L max − 1) do 

for i = 0 to (N 

′ 
max − 1) do 

for all model points v j ∈ M l do 

// Shape deformation procedure. 

t j ← Search for a better position for v j in V l using the ap- 

pearance model trained at level l. 

v j ← t j . 

end for 

// Shape refinement procedure. 

M l ← Refine the intermediate deformed shape usingLRSD- 

SM that employs training sampleswithin the selected shape 

subgroup c from (l + 1) shape subgroupsanatomically most 

similar to the deformed shape. 

end for 

end for 

Output: Organ segmentation result M (L max −1) . 
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of local detailed shape information can be achieved. The hierar-

chical ASM search begins at the coarsest resolution input image

(i.e., level l = 0 of the image pyramid) using the models trained at

that level, and then switches to a finer resolution input image after

convergence or a predefined number of iterations ( Cootes and Tay-

lor, 2001 ). This procedure is repeated until convergence criterion

is met on the original input image in the pyramid. Note that all

the training images used to build the appearance models and the

input images are the originally acquired CT scans rather than the

lesion-corrected low-rank images. Algorithm 4 shows the details of

our hierarchical pathological organ segmentation framework. 

4. Experiments 

In order to evaluate the performance of our proposed method,

and to illustrate the applicability of our method to various patho-

logical organs, we have tested it in two challenging clinical applica-

tions involving pathological liver and right lung segmentation from

a total of 95 clinical CT scans. These two applications differ in the

target organ’s shape and lesion pattern variability. 

4.1. Datasets 

4.1.1. Liver datasets 

For the application of pathological liver segmentation, we have

used a set of 60 portal phase contrast-enhanced abdominal CT

images. 30 CT images were from the public database SLIVER07 1 

( Heimann et al., 2009 ). It consists of 20 training data (SLIVER07-

rain) with gold standard, and 10 testing data (SLIVER07-Test)

without gold standard. Most cases in this database were patho-

logical, including tumors, metastases and cysts of different sizes

( Heimann et al., 2009 ). Another 15 CT images with gold standard

were from the public database 3Dircadb1. 2 Those 15 cases in this

database contained pathology, mainly including metastases, hep-

atocellular carcinoma (HCC) and hemangiomas. The CT scans in

these two databases were acquired using a variety of different CT
1 http://www.sliver07.org . 
2 http://www.ircad.fr/softwares/3Dircadb/3Dircadb1/index.php?lng=en . 

0  
canners and acquisition protocols. The remaining 15 CT images

ere from a locally acquired database Non-Public. All 15 cases

ere from different patients, and the corresponding expert seg-

entations were manually labeled by our clinical partner. The CT

cans were acquired using a 64-detector row and dual-source CT

canner (SOMATOM Definition Flash; Siemens Healthcare, Forch-

eim, Germany), and all cases were pathological, mainly including

etastases, HCC, cysts and hemangiomas. 

In this study, the SLIVER07-Train database was used for train-

ng liver models and determining the parameter settings for our

roposed method. The SLIVER07-Test database was only used for

he liver segmentation competition and to compare our method

ith state-of-the-art methods. Also we combined the 3Dircadb1

atabase (15 cases) and Non-Public database (15 cases) to form

 new database, called Liver-Pathology, which was used for test-

ng the performance of our proposed method. As in Sun et al.

2012) and Umetsu et al. (2014) , we used the longest lesion di-

meter in the axial image plane as a measure to roughly quantify

he size of the pathology. The average and maximum diameter in

he SLIVER07-Test and Liver-Pathology database were 39.3 mm and

7.7 mm, 44.6 mm and 110.2 mm, respectively. Table 1 lists the de-

ails of the liver CT scans in different databases. 

.1.2. Lung datasets 

For the application of pathological right lung segmentation, we

ave employed a set of 35 thoracic CT images. 20 CT images with

old standard were from the public database EMPIRE10 3 ( Murphy

t al., 2011 ). Among them, 10 cases in this database had right lung

athology, mainly including pulmonary nodules, cavities, consoli-

ations, and ground-glass opacity (GGO). The CT scans were ac-

uired using a variety of different CT scanners and acquisition pro-

ocols ( Murphy et al., 2011 ). The remaining 15 CT images were

rom a locally acquired database Lung-Pathology. All 15 cases were

rom different patients, and the corresponding expert segmenta-

ions were provided by our clinical partner. The CT scans were ac-

uired using a 16-detector row CT scanner (Brilliance 16; Philips

edical Systems, Best, The Netherlands), and all cases had diseased

ight lung, mainly including pulmonary nodules, consolidations,

avities and pulmonary fibrosis. To roughly quantify the severity

f the pathology for the right lung tissue, we measured the per-

entage of voxels within the manual reference segmentations with

alues larger than −500 HU as in Sluimer et al. (2005) . The av-

rage and maximum percentage of unhealthy tissue in the Lung-

athology database were 22.6% and 40.6%, respectively. 

In this study, the EMPIRE10 database was used for training right

ung models. And the Lung-Pathology database was used for test-

ng the performance of our proposed method. Table 2 gives the

etails of the lung CT scans in different databases. 

.2. Evaluation metrics and statistical tests 

In order to quantitatively assess the accuracy of our proposed

ethod, we compared the segmentation result with the manual

eference segmentation according to two volume and surface based

etrics: Jaccard index ( JI ) ( Jaccard, 1901 ) and average symmet-

ic surface distance ( ASD ) ( Heimann et al., 2009 ). The JI and ASD

re given in percent and millimeters, respectively. For JI ( ASD ), the

arger (smaller) the value is, the better the segmentation result. 

In all the comparison experiments performed in this study, the

aired t -test was conducted to assess whether the difference in

egmentation accuracy between our method and other methods

as statistically significant, with a significance level set at p <

.05. All statistical hypothesis tests are based on both JI and ASD
3 http://empire10.isi.uu.nl . 

http://www.sliver07.org
http://www.ircad.fr/softwares/3Dircadb/3Dircadb1/index.php?lng=en
http://empire10.isi.uu.nl
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Table 1 

Specifications of the liver CT scans in different databases. 

Database Number of scans In-plane matrix size In-plane resolution [mm] Number of slices Slice thickness [mm] 

SLIVER07-Train 20 512 × 512 0 .58–0.81 64–394 0 .7–5.0 

SLIVER07-Test 10 512 × 512 0 .54–0.87 73–502 0 .5–3.0 

Liver-Pathology 30 512 × 512 0 .56–0.87 74–217 1 .0–4.0 

Table 2 

Specifications of the lung CT scans in different databases. 

Database Number of scans In-plane matrix size In-plane resolution [mm] Number of slices Slice thickness [mm] 

EMPIRE10 20 (276–464) ×(158–382) 0 .60–0.97 127–537 0 .7–2.5 

Lung-Pathology 15 512 × 512 0 .61–0.83 261–361 1 .0 
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etrics, and the null hypothesis is that no difference exists be-

ween our method and other (the compared) methods in mean val-

es of the same evaluation metric. The t -statistic, which follows a

 -distribution under the null hypothesis, is used as the test statis-

ic to calculate the p -value and to decide whether to reject the null

ypothesis. 

.3. Implementation details 

Before processing all the training and testing images, we firstly

mployed the 3-D anisotropic diffusion filter ( Perona and Malik,

990 ) to reduce image noise while retaining important edge in-

ormation. For establishing point correspondences between train-

ng shapes, we used the spherical harmonics (SPHARM) method

 Styner et al., 2006 ) and the Minimum Description Length (MDL)

ethod implemented by Heimann et al. (2006) as described in the

upplementary Material. In the testing phase, the establishment

f point correspondences only needs to be performed once for

he derived initial shapes. We also employed the above-mentioned

ethods to establish point correspondences between the initial

hapes and the mean shape. Since our LRSD-PA based shape initial-

zation method can largely eliminate the negative effects of large

esions, the derived initial shapes thus can robustly align with the

ean shape in the presence of pathologies. 

In Algorithm 2 , the training sample with the least amount of

esion is chosen as the initial average template Ī 0 in the following

perations: firstly we roughly extract the normal liver parenchyma

or each training sample by calculating the liver likelihood im-

ge I LH ( x ) ( Eq. (6) ) from the masked liver region image via their

old standard, followed by thresholding I LH ( x ) using Otsu’s method

 Otsu, 1979 ); and secondly, we perform an exclusive OR (XOR) op-

ration between the extracted normal liver parenchyma and their

old standard, then the XORed result with the least volume among

ll training samples is chosen as the initial average template Ī 0 .

he masked training images via liver masks are used to obtain all

he nonrigid transformations in Algorithm 2 , the resulting trans-

ormations are then propagated to the original training images,

ollowed by applying LRSD to the aligned original images. While

n Algorithm 3 , no liver masks are used. The B-splines based FFD

odel ( Rueckert et al., 1999 ) implemented in the open source

oolbox elastix 4 ( Klein et al., 2010 ) was used to perform all the

mage registration in this study. The normalized mutual informa-

ion (NMI) ( Studholme et al., 1999 ) was employed as the similar-

ty measure. For the nonrigid registrations performed in the model

nitialization module (including Algorithms 2 and 3 ), the follow-

ng parameters are used: three levels of a coarse-to-fine B-spline

rid resolutions with a control point spacing of 80, 40 and 20 mm,

 maximum of 600 iterations of optimization per resolution level,

nd 32 histogram bins for calculating NMI. 
4 http://elastix.isi.uu.nl . 
A leave-one-out cross-validation (LOOCV) on the training set

i.e., the SLIVER07-Train database) was used to tune the parame-

er settings of the proposed hierarchical segmentation framework

ffline. The objective function for optimizing the parameters is to

inimize the ASD segmentation errors. The set of parameter values

hat achieved the best segmentation accuracy in the LOOCV was

hosen for test evaluation. The settings of all parameters, which

emained the same throughout the experiments, are presented in

able 3 . 

In the experiments, we compared our proposed LRSD-SM

ethod with two other shape prior models: classical PCA-based

SM ( Cootes et al., 1995 ) and sparse shape composition (SSC)

 Zhang et al., 2012 ). SSC is a sparse representation-based shape

rior modeling method. It implicitly incorporates shape priors on-

he-fly by refining an input shape as a sparse linear combination

f training shapes in a shape repository. We refer the reader to

hang et al. (2012) for more details. Also, we compared our pro-

osed LRSD-PA based shape initialization method with the con-

entional PA-based method as in Okada et al. (2008) . In our im-

lementation, to avoid bias towards the selected reference image,

e employed an iterative procedure to construct the PA. To allow

or a fair comparison between different methods, the same hierar-

hical segmentation framework was utilized, except for the module

o be compared (i.e., shape prior modeling or shape initialization).

e also fine-tuned the parameter values of all compared meth-

ds to obtain the best results via a LOOCV on the training set (the

LIVER07-Train database). The criteria for choosing the best param-

ter values are the same as in our method. 

We implemented all methods in C ++ 

5 on a Linux system, while

sing ITK ( Ibáñez et al., 2005 ) and VTK ( Schroeder et al., 2006 ) to

erform basic image processing operations and 3-D data visualiza-

ion, respectively. All experiments in this study were conducted on

 desktop PC with a 2.67 GHz Intel quad-core processor and 8 GB

emory. For the segmentation of each testing image, our method

ook an average time of about 145 min, and the vast majority of it

as spent performing the image registrations in the model initial-

zation module. On average, the time to perform one image regis-

ration was about 5 min. 

. Results 

Here we first describe the challenging application of pathologi-

al liver segmentation in detail; then we present the main results

f pathological right lung segmentation, to demonstrate the appli-

ability of our method to segmentation of the various pathological

rgans. 
5 The source code is available at https://github.com/ivanshih/LRSD- SM- PA . 

http://elastix.isi.uu.nl
https://github.com/ivanshih/LRSD-SM-PA
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Table 3 

Parameter values of the proposed hierarchical segmentation framework. 

Step Parameter Value Description 

Probabilistic Atlas k 3 Number of target training data clusters for LRSD-PA 

λ λ0 Parameter in Eq. (4) for LRSD-PA. λ0 = 1 / 
√ 

max (m, n ) is the default value for λ as suggested in Candès et al. 

(2011) , where ( m, n ) is the dimension of the data matrix. 

γ γ 0 Parameter in Eq. (4) for LRSD-PA. γ0 = 1 / (2( 
√ 

m + 

√ 

n )) is the default value for γ as suggested in Candès and 

Plan (2010) , assuming that the standard deviation of the Gaussian noise is σ = 1 . 

N max 3 Maximum number of iterations in Algorithms 2 and 3 

Shape Model n p 2562 Number of landmark points 

λ 1 .8 λ0 Parameter in Eq. (4) for LRSD-SM 

γ 50 γ 0 Parameter in Eq. (4) for LRSD-SM 

Appearance Model k 
′ 

9 Number of sample points in a normalized gradient profile on either side of the landmark point 

Search Algorithm L max 3 Number of resolution levels in the hierarchical ASM search strategy 

N 
′ 
max 10 Number of iterations per resolution level 

n s 6 Number of new positions to search on either side of the landmark point during each iteration 

Fig. 5. Comparison of the two different probabilistic atlases (PAs) generated by the conventional PA model (1st row) and the proposed LRSD-PA model (2nd row) for each of 

three clusters. Each column shows the axial and coronal slices of the PA for each cluster. For the results of the conventional model, regions with heterogeneous appearance 

induced by the large lesions are highlighted by black arrows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

t  

s  

l  

c  

A  

w  

m  

p  

w  

t  

f  

t

 

b  

p  

c  

l  

p  

o  

s  

r  

i  

D  

t  

t  

t  

t  

t  

s  

r  
5.1. Pathological liver segmentation from CT images 

5.1.1. Qualitative results 

Fig. 5 displays the comparison of the probabilistic atlas (PA)

construction for three clusters by using the conventional PA model

and the proposed LRSD-PA model. It clearly shows that the PAs

of the conventional method have large regions with very different

appearance from the normal liver tissue (highlighted by black ar-

rows), suggesting that the conventional method is strongly affected

by the present of severe pathology in the training data. By contrast,

the liver tissue in our results appears much more homogeneous

and sharper, mainly because the use of the lesion-corrected train-

ing data leads to much more accurate pairwise image registration.

It demonstrates that the negative effects of large lesions are largely

eliminated in our method. 

Fig. 6 presents the results of the derived lesion-corrected liver

images for four challenging pathological cases via our proposed

LRSD-PA method, including liver with hypodense lesion, hyper-

dense lesion, hypo- and hyperdense lesions, and metal shadows

caused by implants, respectively. It can be seen that for all these

challenging cases, our method successfully separates the sparse le-

sions or imaging artifacts with different patterns from the derived

lesion-corrected images. Also, the appearance of the resulting liver

tissue is much more homogeneous. Therefore, in the subsequent

processing steps, the negative effects of these large lesions will be

largely eliminated. 

Fig. 7 depicts the comparative results of initial liver shape ex-

traction by using conventional PA-based method and our pro-

posed LRSD-PA based method in three challenging pathological

cases, including liver with hypodense lesion, hyperdense lesion,

and hypo- and hyperdense lesions, respectively. It shows that the
nitial shapes of the conventional method have low overlaps with

he ground truth. And the situation becomes even worse as the

ize of the lesions increase. Because in conventional method, large

esions will lead to large errors in atlas-to-target registration, as

an be seen from the conventional PAs of the first and third cases.

lso the likelihood of the liver tissue becomes very low in regions

ith large lesions. By contrast, the initialization of our method is

ore accurate and much closer to the ground truth, and the su-

eriority of our method becomes even more evident in regions

ith large lesions. Because in our method, the input images are

he derived lesion-corrected pathological images, the negative ef-

ects of these lesions that confound the conventional method are

hus largely eliminated. 

Fig. 8 illustrates the comparative results of liver segmentation

y using shape prior models based on SSM, SSC, and our pro-

osed LRSD-SM method in three challenging pathological cases, in-

luding liver with hypodense lesion, and hypo- and hyperdense

esions. For the first two cases, all methods can restore a large

ortion of the liver tissue with lesions, since liver shapes with-

ut these regions are not considered to be valid according to these

hape models. Both SSM and SSC based methods, however, fail to

ecover some finer local shape details, illustrating the difficulty

n fully capturing the large shape variability of the liver tissue.

ue to the small size of training samples, PCA-based SSM tends

o over-constrain the shape deformations, thus it generally lacks

he flexibility to adapt accurately to these local details. In SSC,

he limited number of training samples are directly included in

he shape repository to refine an input shape, thus these impor-

ant local details will be smoothed out in the constructed large

hape space. Also, it is known that the � 1 -norm based sparse

epresentation method employed in SSC lacks the grouping effect
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Fig. 6. Results of the derived lesion-corrected liver images for four challenging pathological cases via our proposed LRSD-PA method, including liver with (a) hypodense 

lesion, (b) hyperdense lesion, (c) hypo- and hyperdense lesions, and (d) metal shadows caused by implants. The first row shows the pathological input images. The second 

and third rows are their corresponding lesion-corrected images and sparse lesions, respectively. 

Fig. 7. Comparative results of initial liver shape extraction by using conventional PA-based method and our proposed LRSD-PA based method in three challenging pathological 

cases, including liver with (a) hypodense lesion, (b) hyperdense lesion, and (c) hypo- and hyperdense lesions. Every column shows one case, representing the conventional 

and proposed methods, respectively. In each column, the followings are shown sequentially from top to bottom: input image, PA, likelihood image, and the initial shape (i.e., 

the combination of PA and likelihood image) with the ground truth indicated by red contours. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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Fig. 8. Comparative results of liver segmentation by using shape prior models based on (a) SSM, (b) SSC, and (c) our proposed LRSD-SM method in three challenging 

pathological cases, including liver with hypodense lesion (1st and 3rd rows), and hypo- and hyperdense lesions (2nd row). Each row shows one case. The segmentation 

results are drawn as green regions, and the ground truth is indicated by red contours. (d) The 3-D visualization of average symmetric surface distance (ASD) errors of our 

method. The red and blue regions indicate over- and under-segmentation, respectively. (e) The distance to color bar. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Quantitative comparative results of the liver seg- 

mentation with three different shape prior mod- 

eling methods on the Liver-Pathology database. 

Method JI [%] ASD [mm] 

SSM 89.43 ± 2.61 ∗ 1.99 ± 0.92 ∗

SSC 91.68 ± 1.90 ∗ 1.47 ± 0.42 ∗

Our LRSD-SM 92.66 ± 1.55 1.27 ± 0.36 

For each metric, the mean and standard deviation 

of the overall datasets are given. Bold values are 

the best result in that column. ∗ indicates a statis- 

tically significant difference between the marked 

result and the corresponding one of our method 

at a significance level of 0.05. 
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6 The corresponding box plots are available in the Supplementary Material. 
( Zou and Hastie, 2005 ), that is when a group of highly correlated

liver shapes exists in the shape repository, SSC then tends to se-

lect only one from the group, rather than simultaneously select-

ing all the correlated shapes as a group. On the other hand, our

method successfully recovers these finer local details and the de-

lineation is much more accurate. The reason is that, although the

proposed model is based on clustered training data with less train-

ing samples, it partitions the shape space into multiple subspaces

that have much more compact shape distributions. Moreover, the

proposed population-specific model is built from training samples

within the selected shape subgroup anatomically most similar to

the target shape, therefore, it is more specific and detailed than

that based on all the training data. Also, in the hierarchical ASM

search procedure, our proposed population-specific model is de-

formed in a global-to-local fashion, thus allowing for more flexibil-

ity during shape deformation. 

The third case is a particularly challenging one, where the

neighboring gallbladder (indicated by a white arrow) exhibits al-

most similar intensity values to the peripheral hypodense lesion,

thus further complicating the problem of accurate delineation. SSM

based method, as expected, readily leaks into the neighboring gall-

bladder and over-segments the live tissue. It is mainly because

in the SSM based method, these over-segmented regions roughly

fall within the principal subspace spanned by training samples.

Also, a previous proposed pathological liver segmentation method

by Umetsu et al. (2014) has failed in such situation (see Fig. 16

in their paper), resulting in over-segmentation of the liver tissue

in those areas as in SSM. While both SSC and our method suc-

cessfully separate the neighboring gallbladder from the liver tis-

sue to a large extent, because these over-segmented regions in

SSM are explicitly modeled and recovered as the sparse gross er-

rors. Moreover, our method achieves much more accurate result

than SSC, thanks to the high flexibility of our proposed population-

specific model which is deformed in a global-to-local fashion.

Therefore, our method is highly robust against both over- and

under-segmentation errors in the presence of severe pathology. 
.1.2. Quantitative results 

Table 4 6 presents the quantitative comparative results of liver

egmentation by using three different shape prior modeling meth-

ds on the Liver-Pathology database. It shows that our pro-

osed LRSD-SM achieves the highest accuracy with the small-

st variances, and consistently outperforms the other two com-

ared methods, suggesting the robustness of our method across

iverse test data. Also, our method yields statistically significant

mprovements in all metrics over both SSM (paired t -test: t = 7 . 03 ,

p = 9 . 97 × 10 −8 for JI ; t = −4 . 85 , p = 3 . 86 × 10 −5 for ASD ; n = 30 )

nd SSC (paired t -test: t = 6 . 84 , p = 1 . 64 × 10 −7 for JI ; t = −6 . 94 ,

p = 1 . 25 × 10 −7 for ASD ; n = 30 ). Specifically, the mean JI of our

ethod is 92.66%, which is 3.23% and 0.98% higher than SSM and

SC based method, respectively. Regarding ASD metric, our method

btains a mean value of 1.27 mm, which achieves an improve-

ent of 13% on average compared to SSC and up to 36% over

SM. These results demonstrate that our proposed method is sig-

ificantly more accurate and robust than both SSM and SSC in the

resence of severe pathology. 
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Fig. 9. Influence of liver lesion diameter size on the segmentation accuracy. 

Table 5 

Quantitative comparative results of the final liver 

segmentation by using two different model initial- 

ization methods on the Liver-Pathology database. 

Method JI [%] ASD [mm] 

Conventional PA 90.76 ± 1.67 ∗ 1.65 ± 0.43 ∗

Our LRSD-PA 92.66 ± 1.55 1.27 ± 0.36 

For each metric, the mean and standard deviation of 

the overall datasets are given. Bold values are the 

best result in that column. ∗ indicates a statistically 

significant difference between the marked result and 

the corresponding one of our method at a signifi- 

cance level of 0.05. 
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Table 6 

Quantitative evaluation results of the liver shape refinement with and without the 

Frobenius norm term from the input liver shapes with synthetic noise. 

Metrics Input shape Without Frobenius norm With Frobenius norm 

JI [%] 74.17 ± 5.61 ∗ 78.96 ± 3.82 ∗ 79.82 ± 3.66 

ASD [mm] 6.09 ± 1.52 ∗ 4.38 ± 0.85 ∗ 4.12 ± 0.71 

For each metric, the mean and standard deviation of the overall datasets are given. 

Bold values are the best result in that row. ∗ indicates the statistically significant 

differences between input shape and results with the Frobenius norm term, and 

between results without and with the Frobenius norm term at a significance level 

of 0.05. 
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To study the robustness and insensitivity of our method with

espect to pathological liver with different lesion diameter size,

ig. 9 shows the relationship between JI metric and liver lesion di-

meter. We can see that the performance of our method remains

elatively stable as the size of lesion diameter increases. For all the

0 pathological cases from Liver-Pathology database, our method

chieves relatively high accuracy. The JI metric of all cases is above

0%, except for the case with the largest lesion, whose diameter is

arger than 110 mm. Also the tumor volume is around 50% of the

hole liver volume. However, even for this particularly challenging

ase, with a JI of 88.85%, the performance is still considered to be

atisfactory. Therefore, our method is quite robust and to a large

xtent insensitive to the changes relating to the size and pattern

f liver lesions. 

To investigate the effectiveness of our proposed LRSD-PA based

hape initialization method, Table 5 7 provides the comparative re-

ults of final liver segmentation by using two different model

nitialization methods on the Liver-Pathology database. It shows

hat our method achieves statistically significantly better accu-

acy (paired t -test: t = 11 . 17 , p = 5 . 09 × 10 −12 for JI ; t = −8 . 68 ,

p = 1 . 46 × 10 −9 for ASD ; n = 30 ) than the conventional PA-based

ethod according to all metrics. Specifically, the mean JI and

SD of final segmentation results for the conventional method are

0.76% and 1.65 mm, respectively. And our method outperforms

t by 1.9% and up to 23% on average in terms of JI and ASD , re-

pectively. Therefore, in the presence of severe pathology, our pro-

osed method can derive more patient-specific initial shapes for
7 The corresponding box plots are available in the Supplementary Material. 

T  

s  

t  
he hierarchical segmentation framework, which then leads to sig-

ificantly more accurate final segmentation results than conven-

ional PA-based method. 

.2. Comparison of the shape refinement with and without the 

robenius norm 

One of the important steps in our algorithm is the use of the

robenius norm term in Eqs. (3) and ( 4 ). This term can explicitly

odel the small dense Gaussian noise. In order to show the useful-

ess of this term on the final shape refinement, we tested the per-

ormance of our shape model LRSD-SM with the Frobenius norm

erm by adding synthetic noise to the input liver shapes on the

iver-Pathology database. More specifically, we calculated the con-

ex hulls for all the triangular mesh shapes of the gold standard

egmentations, and utilized them as the input shapes for the re-

nement test, which include both gross errors and Gaussian noise.

ote that since the 3-D anisotropic diffusion filter ( Perona and

alik, 1990 ) was firstly employed to denoise all the training and

esting images before processing, we only tested the influence of

his term on the proposed shape model LRSD-SM instead of the

roposed probabilistic atlas model LRSD-PA. Subsequently, we per-

ormed the comparison of the shape refinement with and without

he Frobenius norm term. 

Fig. 10 a shows the liver shape refinement result without the

robenius norm term, namely, by using Eq. (2) and only model-

ng the sparse gross errors. It can be seen that most of the gross

rrors presented in the input shape are eliminated, and the refine-

ent results are close to the gold standard. However, there are

ome unsatisfactory results with a slightly serrated contour. When

 Frobenius norm penalty is added to Eqs. (3) and ( 4 ), the refine-

ent results are much improved as shown in Fig. 10 b. Specifically,

he recovered contour is much smoother and much closer to the

old standard than that shown in Fig. 10 a, especially in the con-

ave regions. This is due to the explicit modeling of Gaussian noise

hrough the Frobenius norm term. 

Table 6 tabulates the quantitative evaluation results of the liver

hape refinement with and without the Frobenius norm term from

he input liver shapes with synthetic noise. We found the statis-

ically significant differences between input shape and result with

he Frobenius norm term (paired t -test: t = 11 . 31 , p = 3 . 80 × 10 −12 

or JI ; t = −11 . 46 , p = 2 . 73 × 10 −12 for ASD ; n = 30 ), and between

esults without and with the Frobenius norm term (paired t -test:

 = 4 . 46 , p = 1 . 13 × 10 −4 for JI ; t = −7 . 83 , p = 1 . 25 × 10 −8 for ASD ;

 = 30 ). These results demonstrate that the incorporation of the

robenius norm term is beneficial to the overall performance, and

ur proposed LRSD-SM is robust against both large sparse shape

rrors and small dense Gaussian noise, thus leading to more ac-

urate shape refinement results. Note that in this experiment, we

dded very large synthetic noise to the input liver shapes, result-

ng in a mean ASD and JI of 6.09 mm and 74.17%, respectively.

his introduced relatively low accuracy of the refinement results as

hown in Table 6 . While in our segmentation of pathological liver

issue, the input liver shapes obtained by the LRSD-PA based shape
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Fig. 10. Visual comparisons of the liver shape refinement results with and without the Frobenius norm term. Refinement results were obtained from the LRSD-based shape 

models (a) without the Frobenius norm term and (b) with the term, respectively. Synthetic noise was added to the input liver shapes on the Liver-Pathology database. All 

images are of 2-D coronal slices. The red and blue contours show the gold standard and the input shape, respectively. The shape refinement results are shown in green 

contours. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 7 

Quantitative comparative initial shape results obtained 

from the LRSD-based atlas models with and without the 

clustering step on the Liver-Pathology database. 

Metrics Without clustering With clustering 

JI [%] 85.68 ± 3.99 ∗ 86.97 ± 3.32 

ASD [mm] 2.55 ± 1.27 ∗ 2.23 ± 0.96 

For each metric, the mean and standard deviation of the 

overall datasets are given. Bold values are the best result 

in that row. ∗ indicates the statistically significant differ- 

ences between the results without and with the cluster- 

ing step at a significance level of 0.05. 
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initialization method are much closer to the gold standard (results

are tabulated later in Table 7 ). 

5.3. Comparison of the LRSD-based atlas models with and without 

the clustering of training data 

A clear drawback of the Liu’s LRSD-based atlas model ( Liu et al.,

2014; Liu et al., 2015 ) is that it fails when the target image dif-

fers considerably from the training data, especially for soft tissue

organs (e.g., the liver) with large anatomical variations. To allevi-

ate this difficulty, we firstly partition the training data into mul-

tiple clusters of similar type cases before applying LRSD, instead

of straightforwardly applying LRSD presented in Liu’s method ( Liu

et al., 2014; Liu et al., 2015 ). Next, we compare the performance of

LRSD-based atlas models working with and without the clustering

step for demonstrating the usefulness of the clustering of training

data. 

Fig. 11 shows the comparisons of the derived lesion-corrected

liver images for one challenging case that differs considerably from

the training data with and without the clustering step. For this

challenging case, the liver parenchyma adjacent to the gallblad-

der (the quadrate lobe) is much smaller than that of the train-

ing cases. It can be seen that the LRSD-based atlas model without

the clustering step fails to obtain satisfactory results. In particular,

the appearance in regions with atypical shapes (highlighted by the

white rectangles), especially in the gallbladder (indicated by black

arrows), deviates considerably from the original input images. By

contrast, the derived lesion-corrected images of our method (i.e.,

with the clustering step) are more faithful to the input images in

all regions. Moreover, our method is demonstrated to offer a sub-

stantial reduction in average computation time and memory cost

of about 73% and 67%, respectively, when compared to that with-

out the clustering step (the number of clusters k = 3 ). Table 7 lists

the quantitative comparative initial shape results with and without

the clustering step on the Liver-Pathology database. It can be seen
hat our method obtains higher accuracy with smaller variances,

nd statistically significant differences are found between the re-

ults without and with the clustering step (paired t -test: t = 2 . 94 ,

p = 6 . 32 × 10 −3 for JI ; t = −2 . 79 , p = 9 . 32 × 10 −3 for ASD ; n = 30 ).

hese results indicate that the clustering of training data before

pplying LRSD significantly improves the results over a direct ap-

lication of LRSD. 

In terms of clinical application, that is to generally achieve a

linical accuracy to within 2 mm ( Nicolau et al., 2004; Kokudo

t al., 2002; Nogueira et al., 2009 ), LRSD-based atlas model method

oes not yield a satisfactory segmentation yet (see Table 7 ). There-

ore, an ASM refinement step is developed in our algorithm to fur-

her improve the segmentation results. Before the ASM refinement

tep, a mean ASD of 2.23 ± 0.96 mm is found for our method. After

he refinement step, the mean ASD is improved to 1.27 ± 0.36 mm.

e observe similar results when the JI is used as the metric for

valuation. More specifically, the mean JI is improved from 86.97

3.32% to 92.66 ± 1.55%. Therefore, the proposed ASM refinement

tep is absolutely necessary in order to yield accurate and satisfac-

ory results for clinical applications. 

.4. Comparison with state-of-the-art methods 

To evaluate the performance of our proposed hierarchical seg-

entation framework in the broader context of recent research,

e compared it with published state-of-the-art automatic meth-

ds that have participated in the SLIVER07 competition ( Heimann

t al., 2009 ). We also validated our proposed method on the

LIVER07-Test database which was specifically tailored for liver

egmentation competition. Since the manual reference segmenta-

ion of the database is unavailable, we submitted our segmen-

ation results to the competition organizers, who then indepen-

ently evaluated the accuracy for us. The following five volume

nd surface based metrics were employed for quantitative compar-

son: volumetric overlap error ( VOE ), signed relative volume differ-

nce ( SRVD ), average symmetric surface distance ( ASD ), root mean

quare symmetric surface distance ( RMSD ), and maximum sym-

etric surface distance ( MSD ). For a more detailed definition of

hese metrics, we refer the reader to Heimann et al. (2009) . 

Table 8 summarizes the quantitative results of all compared

ethods that have achieved top 10 results. Among all com-

ared methods, our method ranks in the third place. Our method

chieves a total score of 76, and it is only one point below the best

core of 77 reached by Wimmer’s and Kainmüller’s method. The

op two ranked methods by Wimmer et al. and Kainmüller et al.

re also based on the ASM framework. Table 9 lists the differences

etween their main components and ours. Compared with these

wo top-ranked methods, our method offers the following advan-
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Fig. 11. Visual comparisons of the derived lesion-corrected liver images for one challenging case that differs considerably from the training data with and without the 

clustering step. (a) The pathological input images. Results were obtained from the LRSD-based atlas models (b) without the clustering step and (c) with the step, respectively. 

The first and second rows are of 2-D axial and coronal slices, respectively. The regions with atypical shapes are highlighted by the white rectangles. 

Table 8 

Comparison of the proposed method to the state-of-the-art methods in the SLIVER07-Test database. 

Method Training Samples VOE [%] SRVD [%] ASD [mm] RMSD [mm] MSD [mm] Total Score 

Wimmer et al., 2009 20 6.5 ± 0.9 1.0 ±2.7 1.0 ± 0.2 2.0 ± 0.3 18.3 ± 4.7 77 ± 4 

Kainmüller et al., 2007 112 6.1 ± 2.1 −2 . 9 ±2.9 0.9 ± 0.3 1.9 ± 0.8 18.7 ± 8.5 77 ± 9 

Our method 20 7.1 ± 1.1 −0.5 ±2.8 1.1 ± 0.2 2.0 ± 0.5 19.4 ± 7.1 76 ± 6 

Linguraru et al., 2012 27 6.4 ± 1.4 2.3 ±2.3 1.0 ± 0.3 1.9 ± 0.6 20.7 ± 4.0 76 ± 6 

Wimmer et al., 2008 20 6.5 ± 1.2 0.6 ±2.0 1.1 ± 0.3 2.5 ± 0.9 24.1 ± 9.0 74 ± 6 

Huang et al., 2012 20 7.6 ± 1.7 −1 . 3 ±3.4 1.3 ± 0.4 2.3 ± 0.9 22.1 ± 9.7 72 ± 8 

Gauriau et al., 2013 20 7.2 ± 1.8 2.6 ±3.0 1.3 ± 0.5 2.6 ± 0.8 23.1 ± 5.0 72 ± 10 

Kirschner, 2013 47 7.5 ± 1.2 −0 . 9 ±3.7 1.3 ± 0.3 2.7 ± 0.7 25.4 ± 6.3 70 ± 7 

Badakhshannoory and Saeedi, 2010 20 8.5 ± 1.3 −2 . 4 ±2.9 1.3 ± 0.3 2.6 ± 0.7 22.4 ± 7.3 70 ± 6 

Heimann et al., 2007 35 7.7 ± 1.9 1.7 ±3.2 1.4 ± 0.4 3.2 ± 1.3 30.1 ± 10.2 67 ± 11 

Table shows the quantitative results of all the existing methods that have achieved top 10 results. For each metric, the mean and standard 

deviation of the overall datasets are given. Bold values are the best result in that column. 

Table 9 

The differences in main components between the top two ranked ASM-based liver segmentation methods and our method. 

Method Shape 

representation 

Shape 

correspondence 

Shape initialization Shape model Appearance model Search algorithm 

Wimmer et al., 

2009 

Level set function 

(signed distance 

map) 

N/R Largest object 

detection based 

Parzen density 

estimation based 

Classifier-based 

boundary and 

region models 

Multi-scale level 

set evolution 

Kainmüller et al., 

2007 

Triangular mesh Manual + surface 

parameterization 

Right lung lobe 

based 

SSM Heuristic intensity 

model 

Constrained 

free-form 

deformation 

Our method Triangular mesh SPHARM + MDL LRSD-PA based LRSD-SM SAM (normalized 

gradient profiles) 

Multi-resolution 

ASM 

N/R and SAM stand for Not Required and statistical appearance model, respectively. 
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8 http://www.sliver07.org/showresult.php?rank=32&submission= 
ages: (1) Our method achieves the best SRVD , which directly as-

esses volumetric information important for applications such as

iver surgery planning ( Heimann et al., 2009 ); (2) Our shape model

an explicitly handle gross errors caused by weak and mislead-

ng appearance cues of large lesions; (3) Our shape initialization

ethod is not based on any heuristics, and can largely eliminate

he negative effects of large lesions; and (4) We use a very small

raining set of 20 samples, which is much less than that used in

ainmüller’s method (112); and when the training size drops to

3, the performance of their method decreases sharply, and only a

otal score of 73 is achieved. Specifically, the mean VOE and ASD

2

f our method are 7.1% and 1.1 mm, respectively (Team HIT-liver 8 

n SLIVER07 competition). Moreover, the score of our proposed

ramework compares favorably to that of a second independent hu-

an rater’s manual segmentation with a score of 75 (Team Lara in

LIVER07 competition). These results demonstrate that the perfor-

ance of our method is comparable with that of state-of-the-art

ethods and human raters, thus it can be deployed for accurate

nd robust liver segmentation in the presence of severe pathology.
015-10-17-0655 . 

http://www.sliver07.org/showresult.php?rank=32&submission=2015-10-17-0655
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Fig. 12. Results of the derived lesion-corrected right lung images for two challenging pathological cases via our proposed LRSD-PA method, including right lung with 

hyperdense lesion (1st row) and hypodense lesion (2nd row). The first column shows the pathological input images. The second and third columns are their corresponding 

lesion-corrected images and sparse lesions, respectively. 

Table 10 

Quantitative comparative results of the final right 

lung segmentation by using two different model ini- 

tialization methods on the Lung-Pathology database. 

Method JI [%] ASD [mm] 

Conventional PA 94.80 ± 2.02 ∗ 0.91 ± 0.33 ∗

Our LRSD-PA 96.13 ± 1.54 0.63 ± 0.25 

For each metric, the mean and standard deviation of 

the overall datasets are given. Bold values are the 

best result in that column. ∗ indicates a statistically 

significant difference between the marked result and 

the corresponding one of our method at a signifi- 

cance level of 0.05. 
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5.5. Pathological right lung segmentation from CT images 

To illustrate the applicability of our method to various patho-

logical organ segmentation, we also evaluated it on pathological

right lung cases. 

Fig. 12 shows the results of the derived lesion-corrected right

lung images for two challenging pathological cases via our pro-

posed LRSD-PA method, including right lung with hyperdense and

hypodense lesions, respectively. We observe that all these lesions

with different patterns are successfully isolated from the derived

lesion-corrected images, and the resulting right lung tissue has a

much more homogeneous appearance. Fig. 13 presents the com-

parative results of initial right lung shape extraction by using

conventional PA-based method and our proposed LRSD-PA based

method in two challenging pathological cases, including right lung

with hyperdense and hypodense lesions, respectively. It shows

that the initial shapes of our method have much higher overlaps

with the ground truth than the conventional method, especially

in regions with large lesions. This is because the derived lesion-

corrected pathological images are employed as the input images in

our method, which leads to more accurate atlas-to-target registra-

tion and higher likelihood of the lung tissue. Therefore, the nega-

tive effects of these large lesions that complicate the conventional

method are largely eliminated in our method. 

Table 10 lists the final right lung segmentation results by using

our proposed LRSD-PA based method for shape initialization on the

Lung-Pathology database, when compared to the conventional PA-

based initialization method. For the final segmentation results, our

method yields mean JI and ASD of 96.13% and 0.63 mm, respec-
ively. Also, our method brings significant improvements (paired t -

est: t = 3 . 26 , p = 5 . 70 × 10 −3 for JI ; t = −3 . 59 , p = 2 . 96 × 10 −3 for

SD ; n = 15 ) over the conventional method in all metrics. Specifi-

ally, our method outperforms it by 1.33% and up to 30% on aver-

ge in terms of JI and ASD , respectively. 

Therefore, for the lung tissue showing different lesion patterns,

ur proposed method also achieves significantly more accurate and

obust segmentation results than the conventional method. It can

hus be deployed for accurate and robust pathological lung seg-

entation. Moreover, all these experimental results demonstrate

he strong consistency and generality of our method not only

cross organ type, but also across pathology type with consider-

bly different characteristics. 

. Conclusion 

In this paper, we have presented a novel method for accurate

nd robust pathological organ segmentation from CT images. This

ethod is grounded on the ASM framework. Our method improves

he ASM framework by the proposal of: (1) a new LRSD-SM shape

rior model; (2) a new LRSD-PA based shape initialization method;

nd (3) a hierarchical ASM search strategy. To illustrate the appli-

ability of our proposed segmentation framework to various patho-

ogical organs, we have tested it in two challenging clinical applica-

ions involving pathological liver and right lung segmentation from

T images. Extensive evaluations were conducted on a total of 95

linical CT scans of pathological cases (including some highly se-

ere ones), and high accuracy and robustness have been achieved.

oth qualitative and quantitative experimental results demonstrate

hat: 

(1) The proposed LRSD-SM method achieves significantly bet-

ter accuracy and robustness than both the conventional SSM

model and the SSC model; 

(2) The proposed LRSD-PA based shape initialization method de-

rives more patient-specific initial shapes for the hierarchi-

cal segmentation framework and achieves significantly bet-

ter results than the conventional PA-based method; 

(3) The performance of the proposed segmentation framework

is comparable with that of state-of-the-art methods and hu-

man raters. 

Therefore, our proposed method significantly improves the per-

ormance of the ASM framework in the presence of severe pathol-

Administrator
高亮

Administrator
高亮
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Fig. 13. Comparative results of initial right lung shape extraction by using conventional PA-based method and our proposed LRSD-PA based method in two challenging 

pathological cases, including right lung with (a) hyperdense lesion and (b) hypodense lesion. Every column shows one case, representing the conventional and proposed 

methods, respectively. In each column, the followings are shown sequentially from top to bottom: input image, PA, likelihood image, and the initial shape (i.e., the combina- 

tion of PA and likelihood image) with the ground truth indicated by red contours. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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gy, and it can be deployed for accurate and robust pathological

rgan segmentation. 

Although very encouraging results have been obtained by our

roposed segmentation framework, there are still several ways to

urther enhance it: 

(1) We employed the simple appearance model based on nor-

malized gradient profiles in our framework, because we

want to focus on the shape prior model (i.e., LRSD-SM). Us-

ing more sophisticated appearance models such as classi-

fiers or clustering techniques would further improve the seg-

mentation accuracy as suggested in Heimann and Meinzer

(2009) ; 

(2) In our current implementation, the computational time of

our method is a bit high, mainly due to the computation-

ally demanding nature of image registrations performed in

the model initialization module. And they account for the

vast majority of processing time in the testing phase (more

than 90%). With recent advances in graphics processing unit

(GPU) technology, the computational costs of our framework

would be substantially reduced by parallelizing the image

registration algorithms on GPU as suggested in Eklund et al.
(2013) . t  
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ppendix A. The Solutions to the SPCP Problem of LRSD-SM via

he ADMM Method 

We first derive the augmented Lagrangian for the SPCP problem

n Eq. (4) : 

 μ(A , E , Z , Y ) = ‖ A ‖ ∗ + λ‖ E ‖ 1 + γ ‖ Z ‖ 

2 
F 

+ 〈 Y , D − A − E − Z 〉 + 

μ

2 

‖ D − A − E − Z ‖ 

2 
F , (A.1) 

here Y ∈ R 

3 N×(K+1) is the Lagrange multiplier, μ > 0 is the

enalty parameter, and 〈 P , Q 〉 = tr(P 

T Q ) denotes Euclidean inner

roduct between two matrices, where P 

T is the transpose of a ma-

rix, and tr ( ·) is the trace of a matrix. Instead of directly solving

he problem in Eq. (A.1) as in the classical augmented Lagrangian

http://dx.doi.org/10.13039/501100001809
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method, ADMM divides it into three subproblems, and minimizes

the variables A, E and Z sequentially with others fixed, leading to

the following iterations: 

A k +1 = arg min 

A 

L μk 
(A , E k , Z k , Y k ) , (A.2)

E k +1 = arg min 

E 

L μk 
( A k + 1 , E , Z k , Y k ) , (A.3)

Z k +1 = arg min 

Z 

L μk 
( A k + 1 , E k + 1 , Z , Y k ) , (A.4)

Y k +1 = Y k + μk (D − A k +1 − E k +1 − Z k +1 ) . (A.5)

All three minimization subproblems admit simple closed-form so-

lutions. 

(i) A subproblem : 

Theorem 1 ( Cai et al., 2010 ) . Given a matrix W and τ > 0, the op-

timal solution to the following minimization problem is given by: 

D τ (W ) = arg min 

X 

τ‖ X ‖ ∗ + 

1 

2 

‖ X − W ‖ 

2 
F , (A.6)

where D τ is the singular value thresholding (SVT) operator ( Cai et al.,

2010 ). It is defined as: D τ (W ) = U S τ (�) V 

T , where U�V 

T = W is the

singular value decomposition (SVD) of W , and S τ (σi j ) = max (| σi j | −
τ, 0) · sgn (σi j ) is the shrinkage operator applied on � element-wisely,

where sgn( ·) is the sign function. 

Given other variables fixed, the closed-form solution for A sub-

problem in Eq. (A.2) can thus be derived, according to Theorem 1 ,

as following: 

A k +1 = arg min 

A 

L μk 
(A , E k , Z k , Y k ) 

= arg min 

A 

‖ A ‖ ∗ + 

μk 

2 

‖ D − A − E k − Z k + μ−1 
k 

Y k ‖ 

2 
F 

= D μ−1 
k 

(D − E k − Z k + μ−1 
k 

Y k ) . (A.7)

(ii) E subproblem : 

Theorem 2 ( Hale et al., 2008 ) . Given a matrix W and τ > 0, the

optimal solution to the following minimization problem is given by: 

S τ (W ) = arg min 

X 

τ‖ X ‖ 1 + 

1 

2 

‖ X − W ‖ 

2 
F , (A.8)

where S τ is the shrinkage operator. 

Similarly, the closed-form solution for E subproblem in Eq.

(A.3) can be derived, according to Theorem 2 , as following: 

E k +1 = arg min 

E 

L μk 
( A k + 1 , E , Z k , Y k ) 

= arg min 

E 

λ‖ E ‖ 1 + 

μk 

2 

‖ D − A k +1 − E − Z k + μ−1 
k 

Y k ‖ 

2 
F 

= S λ
μk 

(D − A k +1 − Z k + μ−1 
k 

Y k ) . (A.9)

(iii) Z subproblem : With other variables fixed, Z subproblem in

Eq. (A.4) leads to a quadratic optimization problem, which has the

following closed-form solution: 

Z k +1 = arg min 

Z 

L μk 
( A k + 1 , E k + 1 , Z , Y k ) 

= arg min 

Z 

γ ‖ Z ‖ 

2 
F + 

μk 

2 

‖ D −A k +1 −E k +1 −Z + μ−1 
k 

Y k ‖ 

2 
F 

= 

μk 

μk + 2 γ

(
D − A k +1 − E k +1 + μ−1 

k 
Y k 

)
. (A.10)
upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.media.2017.02.008. 
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